BLOG

FFG-Success-Story: Die Augen der Zukunft: vorausschauende Sicherheit im Straßenverkehr

Aktuelle Fahrassistenzsystem behandeln hauptsächlich vorhersehbare Szenarien. Doch was, wenn sich ein Verkehrsteilnehmer unvorhersehbar verhält?

Ein Kind springt plötzlich auf die Straße, ein Fahrradfahrer taucht aus dem nichts auf, ein Fußgänger dreht plötzlich am Zebrastreifen nochmal um – die unvorhersehbaren Szenarien im Straßenverkehr sind vielfältig. Umso wichtiger ist es, selbstfahrende Fahrzeuge mit der Technologie auszustatten, solche Szenarien in Echtzeit zu erfassen und richtig zu beurteilen – idealerweise noch schneller als es ein Mensch je könnte.

Weiterentwicklung der 360° Wahrnehmung von Fahrzeugen

Fahrzeuge sind durch sogenannte LiDAR-Sensoren bereits jetzt in der Lage, ihre Umgebung rund um sich zu erkennen (360° Wahrnehmung).

Unvorhersehbare Szenarien im Straßenverkehr verlangen nach einer Weiterentwicklung der bestehenden Technologie, vor allem im städtischen Bereich.

Die dazu nötige signifikante Verbesserung von Gesichtsfeld und Auflösung erfordert Innovationen aller Komponenten eines LiDAR-Sensors: eine hybride Laserquelle für kürzere und intensivere Pulse bei höherer Wiederholrate, ein neues Spiegel- und Package-Design mit größerer Fläche bei größeren Auslenkwinkeln, ein Empfänger mit größerem Detektorfeld und eine effizientere und gleichzeitig genauere Pulsdetektion und Zeitmessung.

3D-Objektdetektion und KI-gestützte LiDAR-Daten

Die resultierenden Punktwolken gehen in die 3D-Objektdetektion und –klassifikation ein. Die Objekte werden in einem sicheren, subsidiären Datenauswerteprozess segmentiert, mit Hilfe von Deep Learning-Algorithmen identifiziert und in Fahrzeuge, Fußgänger, Radfahrer, stationäre Objekte usw. klassifiziert. Diese LiDAR-Daten werden in Folge mittels Sensor Fusion mit Radar- und Kameradaten kombiniert.

Die Hardware für Datenauswertung und Sensor Fusion beinhaltet einen Rechner mit standardisierten Sensorschnittstellen für LiDAR, Radar und Ultraschallsensoren sowie Kameras und die Netzwerkkonnektivität. Dies erlaubt eine umfassende Datensammlung aller Sensoren während Testfahrten.

Die Daten werden annotiert und für Training, Test und Evaluation der Objektklassifikatoren und Algorithmen verwendet. Es ist geplant, resultierende Datensätze öffentlich zur Verfügung zu stellen, um weitere Forschung zu unterstützen; ein Data Management Plan beschreibt die Details für den Zugriff.

Des Weiteren soll die Sensorfusions-Hardware als Entwicklungsplattform für zukünftige Forschungsprojekte nutzbar sein. Das Open Simulation Interface soll genutzt werden, um die fusionierten Objekte, Freiflächeninformation usw. den Algorithmen zum Szenenverständnis weiterzureichen, wo die Objekte verfolgt und ihr Verhalten im Sinn einer prädiktiven Gefahrenbewertung vorausgesagt werden.

Use Cases und Ergebnisse

Für die hochrelevante Simulation und Validierung von Fahrerassistenz- und autonomen Systemen im urbanen Umfeld wurden neue Test- und Referenzsysteme auf Basis des hochauflösenden LiDAR-Sensors entwickelt.

Schließlich wurden verschiedene ausgewählte Use Cases, u.a. für Straßen- und Schienenfahrzeuge im städtischen Bereich sowie landwirtschaftliche Anwendungen, umgesetzt, um die Relevanz und Leistungsfähigkeit des Ansatzes praktisch zu demonstrieren.

Fazit

Vulnerable Road Users sind Verkehrsteilnehmer, die besonderen Schutz brauchen. Hinzu kommt, dass diese sogenannten VRUs sich oft nicht vorhersehbar verhalten. Zu diesem Zweck benötigt es intelligenter Sensortechnologie, die seine Umgebung in Echtzeit wahrnimmt, potenzielle Gefahren erkennt und so automatisiertes Fahren im Stadtverkehr ermöglicht. Das Projekt iLIDS4SAM leistet hierzu einen wichtigen Beitrag.

Projekt Koordination (Story)

Thomas Gölles, Dr

Senior Researcher

Autonomous Systems

 

Projekt Koordination

Infineon Technologies Austria AG

Projekt Partner

Silicon Austria Labs GmbH

Virtual Vehicle Research GmbH

AVL List GmbH

Technische Universität Graz

ams-OSRAM AG

EV Group E.Thallner GmbH

FH Campus Wien Forschungs- und Entwicklungs GmbH

RIEGL Research & Defense GmbH

IDeAS GmbH & Co KG

TTTech Auto AG

The project was funded by the program “IKT der Zukunft” of the Austrian Federal Ministry for Climate Action (BMK).
The program is managed by the Austrian Research Promotion Agency (FFG).
https://projekte.ffg.at/projekt/3759710